
Singularity and High
Throughput Computing

Singularity User Group meeting 2019

Dave Dykstra <dwd@fnal.gov>
Fermi National Accelerator Laboratory

Many slides based on material from Mats Rynge, University of Chicago

High Throughput Computing
High Throughput Computing (HTC)

Sustained computing over long periods of time. Usually single-thread code, or low number of
cores threaded within each node. “Embarrassingly parallel” applications. Uses commodity,
relatively inexpensive hardware (much like most commercial cloud resources).

vs. High Performance Computing (HPC)
Great performance over relatively short periods of time. Large scale MPI. Each project
typically gets small percentage of total time. Specialized low-latency networking hardware,
high speed filesystem.

Distributed HTC
No shared file system.
Users ship input files and some software their jobs.

Opportunistic Use
No allocations. Resource owners have priority; other jobs compete for available resources.
Applications (esp. with long run times) can be preempted (or killed) by resource owner’s jobs.
Applications should be relatively short or support being restarted. 2

Open Science Grid

OSG is a consortium of software,
service and resource providers and
researchers, from universities, national
laboratories and computing centers
across the U.S., who together build
and operate the OSG project. The
project is funded by the NSF, and
provides staff for managing various
aspects of the OSG.

Integrates computing and storage
resources from over 100 sites in the
U.S.

A framework for large scale Distributed HTC resource sharing addressing
the technology, policy, and social requirements of sharing computing
resources in the U.S.

3

Worldwide LHC Computing Grid

The WLCG is a collaboration of more than
170 sites in 42 countries. The mission of
the WLCG project is to provide global
computing resources to store, distribute and
analyze the ~50-70 Petabytes of data
expected every year of operations from the
LHC. (Data expected to grow significantly.)

The OSG was initially created by the LHC
High Energy Physics (HEP) experiments,
and funding for them paid for the majority of
the resources. They are still the largest
users; CMS uses about half the core hours.

The WLCG is the HTC computing grid for the Large Hadron Collider at
CERN. In addition to the OSG, it also includes a roughly similar amount
of resources in EGI, the European Grid Initiative.

4

Open Science Grid scale

~ 4.5 million CPU hours delivered per day (~190K avg cores)
5

“Submit Locally, Run Globally”

6

Motivations to use Singularity
● Invoked by unprivileged user - HTC uses unprivileged “pilot jobs” to bootstrap, and those each

read from a per-Virtual Organization (VO) queue of jobs from different users.

● Process isolation - Isolates the job environment (--ipc –pid) so that a job can not affect other jobs.

● File isolation - Isolates the job file system (--contain), so that a job can not peek at other jobs’ data.

● Consistent environment (default images) - If a user does not specify a specific image, a default
one is used by the job. The image contains a decent base line of software, and because the same
image is used across all the sites, the user sees a more consistent environment than if the job
landed in the environments provided by the individual sites.

● Custom software environment (user defined images) - Users can create and use their custom
images, which is useful when having very specific software requirements or software stacks which
can be tricky to bring with a job. For example: Python or R modules with dependencies, TensorFlow

● Enables special environment such as GPUs - Special software environments to go hand in hand
with the special hardware.

7

Container Lifecycle (Hint: ephemeral)

• Every job is encapsulated in a separate container instance

• Container instance dies when the job finishes

• Lots of container image reuse, as workloads generally use
one or a small number of images for a large number of jobs

• Application software is mostly outside of the container

8

OSG Singularity instances per day

9

Average is about a half a million per day.
Only small to medium users. Large projects have their own monitoring.

CMS Singularity instances per month

10

CMS requires all its
sites to install
Singularity. They do
about a million
container starts per
day worldwide.

GPU Usage in OSG powered by Singularity

11

Usage over the last year

Average about 1K cores

12

1.5 million containers x 5 GB (average size of
container for estimate, CMS actually bigger) =

7.5 PB / day
We need an efficient way to distribute

containers!

CVMFS - CERN Virtual Machine File System

Your job is
here!

“The CernVM File System provides a scalable, reliable and low-maintenance software distribution service. It was
developed to assist High Energy Physics (HEP) collaborations to deploy software on the worldwide-distributed
computing infrastructure used to run data processing applications. CernVM-FS is implemented as a POSIX read-only file
system in user space (a FUSE module). Files and directories are hosted on standard web servers and mounted in the
universal namespace /cvmfs.”

Pre-existed use of containers

Used for software and some data

Heavily cached, read-only

Available across OSG, EGI, some
XSEDE resources

13

CVMFS features

● Files appear immediately present, but are only downloaded on demand

● Metadata operations are done on the worker node, on “catalogs” downloaded in chunks of

about 100K files or less

● Files stored and transferred named by secure hash of contents of files, deduplicated and
compressed

● Cryptographically verified with a digital signature on one small file

● Larger files broken up into ~8 MB chunks (by default) to smooth out load on servers

● Served from small number of worldwide “stratum 1” servers, cached in http proxy caching
servers (squid) at each site, and cached on each worker node - caches greatly reduce latency
and bandwidth

● Optional “external data server” mode - for data (metadata uses standard path) of partially reused
data files, using separate caching servers at geographically distributed high-capacity network sites

14

Example CVMFS Repositories

15

/cvmfs/

ams.cern.ch

atlas.cern.ch

cms.cern.ch

connect.opensciencegrid.org

icecube.opensciencegrid.org

fermilab.opensciencegrid.org

ligo.opensciencegrid.org

ligo-containers.opensciencegrid.org <- large project with their own containers

nova.opensciencegrid.org

oasis.opensciencegrid.org

singularity.opensciencegrid.org <- general containers (next few slides)

stash.osgstorage.org <- ~1PB of user published data

cvmfs-singularity-sync

16

● Containers are defined using Docker
○ Public Docker Hub

● … and executed with Singularity
○ No direct access to the Singularity command line - that

is controlled by the infrastructure

● https://github.com/opensciencegrid/cvmfs-singularity-sync

https://github.com/opensciencegrid/cvmfs-singularity-sync

User-defined Container Workflow

17

Hub

docker build + push

git push

Automatic
builds on
changes

Automatic
sync on
changes

docker_images.txt
cvmfs-singularity-sync

Pull request or ticket to register container (one time)

/cvmfs

Extracted Images

18

We store container images on CVMFS in extracted form (Singularity calls
this “sandbox” mode). That is, we take the Docker image layers or the
Singularity img/simg/sif files and export them onto CVMFS. For example, ls
on one of the containers looks similar to ls / on any Linux machine:
$ ls /cvmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-el7:latest/
cvmfs host-libs proc sys anaconda-post.log lib64
dev media root tmp bin sbin
etc mnt run usr image-build-info.txt singularity
home opt srv var lib

Result: Most container instances only use a small part of the container
image (50-150 MB) and that part is cached in CVMFS! We don’t care
about docker layers because cvmfs deduplicates everything.

Mountable image files vs CVMFS images

● When a high speed local mounted filesystem is available, singularity mounts the
image file on the client as a loopback filesystem – this moves the metadata

operations to the client and only reads the pieces actually used – CVMFS does too

● The difference is that files published in CVMFS are instantly available worldwide

● But, most HPC admins are suspicious of FUSE, so we build image files to use
HPC allocations
⎯ CMS and ATLAS application software is much larger than the OS code that they usually have in

a container image; normally we bind mount /cvmfs into the container for application code

⎯ They find it very difficult to trim the size down, so the typical CMS and ATLAS HPC image size is

around 200 GB and takes about 8 to 12 hours to build reading from CVMFS, then needs to be

uploaded to each HPC filesystem

⎯ Typically these containers include the “pilot”, so we get no isolation between users and so have

to run only “production” jobs all by the same user id, no user analysis jobs
19

Unprivileged, non-setuid Singularity

● Because HTC does not need to use loopback mounts, and we can avoid
overlayfs by using the underlay feature for adding bind mounts, so we can use
the unprivileged namespace feature now standard in RHEL 7.6
⎯ This is considered to be key for reducing vulnerability to risks of setuid-root. Unprivileged

namespaces also get CVEs, but there are many more people examining the Linux kernel than
Singularity.

⎯ Underlay works by first bind-mounting everything requested onto a scratch area, then bind-
mounting everything else from the image onto the same scratch area, and using a read-only
bind-mount of the scratch area as ‘/’ for the container.

● The ability to mount FUSE filesystems in unprivileged namespaces is now in the latest Linux
kernels, which when it becomes available should provide even more highly useful
functionality to unprivileged Singularity

20

EPEL

● WLCG has standardized on Red Hat Enterprise Linux and its derivatives,
Scientific Linux and CentOS

● Extra Packages for Enterprise Linux (EPEL) is part of the Fedora project and
adds packages for RHEL (currently RHEL6 and RHEL7)

● OSG has their own software support team and yum repositories, and EGI has
their own yum repositories where they import rpms, and both depend on EPEL –
the original supporter of singularity in EPEL lost interest, so I volunteered to take over

● Currently I have installed singularity-3.1.0 in the current Fedora releases, but I am waiting on
at least one singularity fix (recently merged) and on more feedback from production users of
EPEL singularity-2.6 before upgrading to singularity-3.x in EPEL – not in epel-testing yet either
in case there needs to be a security release 2.6.x, but it is in the osg-upcoming yum repository

21

Links

● https://opensciencegrid.org, https://display.opensciencegrid.org

● http://wlcg.web.cern.ch

● https://cernvm.cern.ch/portal/filesystem

22

https://opensciencegrid.org/
https://display.opensciencegrid.org/
http://wlcg.web.cern.ch/
https://cernvm.cern.ch/portal/filesystem

